Experiment 5: Polarization and Interference # 实验5:偏振和干涉

Nate Saffold <br>nas2173@columbia.edu

Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216

奈特·萨福尔德 <br>nas2173@columbia.edu

办公时间周一,5:30PM-6:30PM @ 普平楼 1216

INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 # 实验物理实验室导论 1493/1494/2699

Introduction # 介绍

  1. Electromagnetic waves
  2. Polarization of an EM wave
  3. Interference and diffraction (double and single slit experiments)
  1. Description of the apparati
  2. Data analysis
  1. 电磁波
  2. 电磁波偏振
  3. 干涉衍射双缝单缝实验
  1. 仪器描述
  2. 数据分析

Electromagnetic waves # 电磁波

c=299792458 m/s3×108 m/sc=299792458 \mathrm{~m} / \mathrm{s} \simeq 3 \times 10^{8} \mathrm{~m} / \mathrm{s}

c=299792458 m/s3×108 m/sc=299792458 \mathrm{~m} / \mathrm{s} \simeq 3 \times 10^{8} \mathrm{~m} / \mathrm{s}

(James Clerk Maxwell... Pretty smart guy...)

(詹姆斯·克拉克·麦克斯韦...非常聪明的...)

Polarization # 偏振

Unpolarized beam of light moving perpendicularly to the screen. No preferred direction of oscillation

Linearly polarized beam of light moving perpendicularly to the screen. Electric field points in one direction only.

非偏振光束垂直于屏幕移动。没有优先的振动方向

线偏振光束垂直于屏幕移动。电场仅指向一个方向

Polarization by selective absorption # 通过选择性吸收的偏振

  1. First one: it makes unpolarized light linearly polarized
  2. Second one: it determines which fraction of the incoming light arrives at the end of the apparatus
  1. 第一个:它使非偏振变成线偏振光
  2. 第二个:它决定入射的哪个部分到达装置末端

Polarized and different intensity

偏振且强度不同

Malus' Law # 马吕斯定律

Electric field coming out of first polarizer

Orientation of second polarizer

Orientation of first polarizer

第一个偏振片出来的电场

第二个偏振片方向

第一个偏振片方向

Malus' Law # 马吕斯定律

I=E2I=|\vec{E}|^{2}

I=E2I=|\vec{E}|^{2}

Intensity coming out of second polarizer

第二个偏振片出来的强度

Malus' Law # 马吕斯定律

Interference # 干涉

Young's double slit experiment # 杨氏双缝实验

Young's double slit experiment # 杨氏双缝实验

Condition for a bright spot # 明亮斑点的条件

Δ=dsinθ\Delta \ell=d \sin \theta

Condition for a bright spot # 明亮斑点的条件

Δ=dsinθ=mλ\Delta \ell=d \sin \theta=m \lambda

where mm is an integer number and λ\lambda is the wavelength of incoming light

其中 mm 是一个整数λ\lambda 是入射波长

sinθtanθxm/D\sin \theta \simeq \tan \theta \simeq x_{m} / D

The distance of the mm-th bright spot from the center is then:

mm 阶明亮斑点距离中心距离是:

xm=m(λDd)x_{m}=m\left(\frac{\lambda D}{d}\right)

Young's double-slit experiment # 杨氏双缝实验

Young's double-slit experiment # 杨氏双缝实验

Diffraction intensity pattern # 衍射强度图案

I=I0(sin(πaλsinθ)πaλsinθ))2= single-slit width λ= wavelength θ= angle on the screen \left.I=I_{0}\left(\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right)\right)^{2=\text { single-slit width }} \begin{aligned} & \lambda=\text { wavelength } \\ & \theta=\text { angle on the screen } \end{aligned}

Diffraction intensity pattern # 衍射强度图案

I=I0(sin(πaλsinθ)πaλsinθ)I=I_{0}\left(\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right)

a = single-slit width λ=\lambda= wavelength θ=\theta= angle on the screen

a = 单缝宽度 λ=\lambda= 波长 θ=\theta= 屏幕上的角度

πaλsinθ=nπn=±1,±2,±3,\begin{aligned} & \frac{\pi a}{\lambda} \sin \theta=n \pi \\ & n= \pm 1, \pm 2, \pm 3, \ldots \end{aligned}

xn=n(λDa)x_{n}=n\left(\frac{\lambda D}{a}\right)

Diffiraction intensity pattern # 衍射强度图案

I=I0(sin(πaλsinθ)πaλsinθ)2I=I_{0}\left(\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right)^{2}

a = single-slit width λ=\lambda= wavelength θ=\theta= angle on the screen

a = 单缝宽度 λ=\lambda= 波长 θ=\theta= 屏幕上的角度

πaλsinθ=nπn=±1,±2,±3,\begin{aligned} & \frac{\pi a}{\lambda} \sin \theta=n \pi \\ & n= \pm 1, \pm 2, \pm 3, \ldots \end{aligned}

The Experiment # 实验

Goals # 目标

I(θ)=I0cos2θI(\theta)=I_{0} \cos ^{2} \theta

Equipment # 设备

Part 1: Malus' law # 第1部分:马吕斯定律

Outgoing light should be polarized! # 输出的光应该是偏振的!

Part 1: Malus' Law # 第1部分:马吕斯定律

Part 1: Malus' Law # 第1部分:马吕斯定律

I(θ)=I0cos2θI(\theta)=I_{0} \cos ^{2} \theta

Part 2: double-slit experiment # 第2部分:双缝实验

Part 2: double-slit experiment # 第2部分:双缝实验

λmeas =626.1±3.5 nmλtheor =632.8 nm\begin{aligned} & \lambda_{\text {meas }}=626.1 \pm 3.5 \mathrm{~nm} \\ & \lambda_{\text {theor }}=632.8 \mathrm{~nm} \end{aligned}

Part 3: single-slit envelope # 第3部分:单缝包络

I=I0(sin(πaλsinθ)πaλsinθ)2I=I_{0}\left(\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta}\right)^{2}

IMPORTANT: For this part of the experiment switch to slit D!

重要:对于这部分实验,切换到缝隙D

Part 3: single-slit envelope # 第3部分:单缝包络

NOTE: This part may vary depending on your TA. Ask them for the exact procedure!

注意:这部分可能会根据你的助教而有所不同。向他们询问确切的步骤

Tips # 提示

  1. For all the three parts: be careful when you read the intensity. The photometer is analogical and the reading might be influenced by parallax. Try to read the photometer always in the same way
  2. For the polarizer part: put the polarizers as close as possible to the optic fiber cable to minimize the amount of environmental light coming in.
  3. For the last part: move everything closer to the laser to make the pattern bigger but remember to change the value of DD !
  4. 对于所有三个部分:在读取强度时要小心。光度计是模拟的,读数可能会受到视差的影响。尽量始终以相同的方式读取光度计
  5. 对于偏振片部分:将偏振片尽可能靠近光纤电缆,以最小化进入的环境光量。
  6. 对于最后一个部分:将所有东西移近激光器以使图案变大,但记得更改DD的值!